----------------------------- ----------------------------

XML Persian Abstract Print


Abstract:   (35 Views)
With the growing attention to the impact of physical environments on cognitive functioning, neuroarchitecture—as a novel integration of architectural design and neuroscience—has provided a scientific framework for enhancing the quality of learning spaces. This approach, grounded in findings from cognitive neuroscience and brain imaging, seeks to align spatial design elements with the structure and functions of the human brain, particularly during the early stages of development. Among various cognitive capacities, visual–spatial intelligence—a core component of Gardner’s theory of multiple intelligences—plays a pivotal role in mental imagery, information processing, visual reasoning, and spatial learning.
The aim of this study is to propose a conceptual model demonstrating how architectural elements in Architecture of educational spaces, within the framework of neuroarchitecture, can enhance children’s visual intelligence by mediating neural–cognitive perception processes. The data were derived from a quantitative study involving 400 participants, including teachers, architects, and educational experts, and were analyzed using Structural Equation Modeling (SEM).
The findings indicate that components such as natural light, spatial legibility, geometry and form, human scale, spatial rhythm, and environmental flexibility influence spatial perception, visual memory, and cognitive wayfinding through the activation of brain regions such as the visual cortex (V1–V4), hippocampus, amygdala, and prefrontal networks. Based on these results, the conceptual framework proposed in this paper offers a brain-centered model for educational design that may contribute to the optimization of school architecture, the development of educational standards, and the enhancement of learning experiences
     
Type of Study: Research |
Received: 2025/12/8 | Accepted: 2021/10/2 | ePublished ahead of print: 2025/12/8

References
1. Abbas, S., Okdeh N, Roufayel R, Kovacic H, Sabatier JM, Fajloun Z, Abi Khattar Z. (2024). Neuroarchitecture: How the Perception of Our Surroundings Impacts the Brain. Biology, 13(4), 220. [DOI:10.3390/biology13040220] [PMID] []
2. Alonso, F., Martinez, R., & Sanchez, J. (2021). Effects of classroom daylighting on students' cognitive performance: An EEG-based study. Building and Environment, 196, 107788. [DOI:10.1016/j.buildenv.2021.107788] [PMID] []
3. Assem, H. M. (2023). Designing for Human Wellbeing: The Integration of Neuroscientific Insight… Environmental Psychology Review. [DOI:10.1016/j.jobe.2022.xxx]
4. Barrett, P., Davies, F., Zhang, Y., & Barrett, L. (2015). The impact of classroom design on pupils' learning: Final results of a holistic, multi-level analysis. Building and Environment, 89, 118-133. [DOI:10.1016/j.buildenv.2015.02.013]
5. Brussoni, M., Gibbons, R., Gray, C., Ishikawa, T., Sandseter, E. B., & Tremblay, M. S. (2015). What is the Relationship between Outdoor Time and Physical Activity, Sedentary Behaviour, and Physical Fitness in Children? A Systematic Review
6. International Journal of Environmental Research and Public Health, 12(6), 6455-6474
7. Castilla, N., Llinares, C., & Bravo, J. M. (2022). The effects of illuminance and correlated colour temperature on students' cognitive performance: An EEG-based study. Building and Environment, 207, 108556. DOI: 10.1016/j.buildenv.2021.108556 [DOI:10.1016/j.buildenv.2021.108556]
8. Chatterjee, A. (2014). Neuroarchitecture: How neuroscience can inform architecture. Frontiers in Psychology, 5, 23-30.
9. Choi, K., Suk, H. J., & Lee, J. (2019). The influence of daylight on student learning performance. Building and Environment, 156, 246-257 Cruz-Garza, J. G., Fedorka, C. E., Newton, M. L., & Choi, J. (2021). EEG-based investigation of the impact of classroom lighting on student engagement and cognitive performance. Building and Environment, 202, 108013. DOI: 10.1016/j.buildenv.2021.108013 [DOI:10.1016/j.buildenv.2021.108013]
10. Dadvand, P., et al. (2015). Green spaces and cognitive development in children. Environmental Health Perspectives, 130(4), 373-378.
11. Doaee, M., & Esenarro, D. (2024). Architectural Strategies for Fostering Creativity and Enhancing Education for Children with Autism. Ain Shams Engineering Journal, 15(9), 102898. [DOI:10.1016/j.asej.2024.102898]
12. Domingos, L. F. (2025). Neuro-Architecture: A Guiding Principle for Sustainable and Inclusive Design. Journal of Architecture and Urban Planning, 15(1), 1-15. [DOI:10.1016/j.jaup.2025.01.001]
13. Eberhard, J. P. (2009). Brain Landscape: The Coexistence of Neuroscience and Architecture. New York: Oxford University Press. [DOI:10.1093/acprof:oso/9780195331721.001.0001]
14. Esenarro, D., Ccalla, J., Raymundo, V., Castaneda, L., Davila, S. (2023). Neurostimulating architecture applied in the design of educational centers Early Cognitive Development in the District of Villa El Salvador, Lima Buildings, 13(12), 3034. [DOI:10.3390/buildings13123034]
15. Gardner, H. (2011). Frames of mind: The theory of multiple intelligences (10th ed.). Basic Books. (Original work published 1983
16. Ghamari, H., Golshany, N., Naghibi Rad, P,. Behzadi, F. (2021). Neuroarchitecture assessment: An overview and bibliometric analysis. Frontiers in Human Neuroscience, 15, 799544. DOI:10.3390/ejihpe11040099 [DOI:10.3390/ejihpe11040099] [PMID] []
17. Gharaei, B., Hayeri Zadeh, S. M. S., & Ghomeishi, M. (2024). Developing a Neuroarchitecture-based User Centered Design for Elementary Schools in Tehran. Ain Shams Engineering Journal, 15(9), 102898. [DOI:10.1016/j.asej.2024.102898]
18. Jain, R., Singh, P., & Arora, S. (2022). Flexible learning spaces: Design principles for 21st-century schools. Learning Environments Research, 25(3), 529-548. [DOI:10.1007/s10984-021-09376-9] [PMID] []
19. Karakas, T., Yildiz, D. (2020). Exploring the influence of the built environment on human experience through a neuroscience approach: A systematic review, Frontiers of Architectural Research, [DOI:10.1016/j.foar.2019.10.005]
20. Kaplan, R., & Kaplan, S. (1989). The experience of nature: A psychological perspective. Cambridge University Press
21. Kumari, N., Gupta, R., & Sharma, P. (2023). Privacy and personal space in educational environments: Implications for student well-being. Journal of Environmental Psychology, 86, 101974. [DOI:10.1016/j.jenvp.2023.101974]
22. Li, Z., Lee, J. H., Yao, L., & Ostwald, M. J. (2025). Impact of built environments on human perception: A Systematic Review of Physiological Measures and Machine Learning Journal of Building Engineering, 112319. [DOI:10.1016/j.jobe.2025.112319]
23. M. Llorens-Ga'mez, J.L. Higuera-Trujillo, C.S. Omarrementeria et al., The impact of the design of learning spaces on attention and memory from a neuroarchitectural approach: A systematic review, Frontiers of Architectural Research, [DOI:10.1016/j.foar.2021.12.002]
24. Nguyen, L., Walters, J. (2024). Benefits of nature exposure on cognitive functioning in children and adolescents: A systematic review and meta-analysis. Journal of Environmental Psychology. [DOI:10.1016/j.jenvp.2024.102336]
25. Qayyum, A., Fatima, R., & Iram, A. (2024). Play-Based Learning and Child Cognitive-Emotional Development in Nature-Based Programs. Annals of Human and Social Sciences, 5(4), 348-365. [DOI:10.35484/ahss.2024(5-IV)33]
26. Raisi, R., Zakeri, SMH., Fattahi, K., Daneshmand, S. (2025). Exploring neuro-architecture's influence on indoor learning spaces: A systematic review. Learning Environments Research. 10.1080/17508975.2025.2502009 PMC+2Taylor & Francis Online+2EKB Journals+2PMCScienceDirect []
27. Vartanian, O., Farzanfar, D., Munar, E. et al. (2024). Neural dissociation between computational and perceived measures of curvature. Sci Rep 14, 26529 [DOI:10.1038/s41598-024-76931-8] [PMID] []
28. Vartanian, O., Navarrete, G., Chatterjee, A., Fich, L. B., González-Mora, J. L., Leder, H., Modroño, C., Nadal, M., Rostrup, N., & Skov, M. (2015). Architectural design and the brain: Effects of ceiling height and perceived enclosure on beauty judgments and approach-avoidance decisions. Journal of Environmental Psychology, 41, 10-18. [DOI:10.1016/j.jenvp.2014.11.006]
29. Vartanian, O., Navarrete, G., Chatterjee, A., Fich, L. B., Leder, H., Modroño, C., Nadal, M., Rostrup, N., & Skov, M. (2013). Architectural design and the brain: Effects of curvilinear versus rectilinear forms on emotion and cognition. Psychology of Aesthetics, Creativity, and the Arts, 18(2), 187-200. [DOI:10.1037/aca0000454]
30. Wang, S., Oliveira, S., Djebbara, Z., Gramann, K. (2022). The Embodiment of Architectural Experience: A Methodological Perspective on Neuro-Architecture. Frontiers in Human Neuroscience. doi: 10.3389/fnhum.2022.833528 [DOI:10.3389/fnhum.2022.833528] [PMID] []
31. Westwood, E., Westwood, E., Smith, S., Mann, D., Pattinson, C., Allan, A., & Staton, S. (2023). The effects of light in children: A systematic review. Journal of Environmental Psychology. [DOI:10.1016/j.jenvp.2023.102062]
32. Zhou, Q., & Fang, X. (2024). Exploring the Application of Neurostructural Principles to the Design of Public Spaces on University Campuses. Land, 13(12), 1978. [DOI:10.3390/land13121978]
33. Figueiro, M. G. (2017). Light, sleep and circadian rhythms in older adults with Alzheimer's disease and related dementias. Neurodegenerative Disease Management, 7(2), 119-125. [DOI:10.2217/nmt-2016-0060] [PMID] []
34. Shield, B. M., & Dockrell, J. E. (2003). The effects of noise on children at school: A review. Building Acoustics, 10(2), 97-116. [DOI:10.1260/135101003768965960]
35. افرند خلیل آباد، ف.، حبیب، ف.، حبیب، ف. (1401). تبیین نقش مولفه های کالبدی محیط آموزشی بر انگیزش به یادگیری دانش‌آموزان مقطع ششم ابتدایی شهر تهران. معماری و شهرسازی آرمانشهر.
36. اکبرپور، س.، حمیدی، ف.، شاپوریان، ف. (1403). اثربخشی آموزش مهارت‌های ادراک دیداری-فضایی بر خلاقیت در درس هنر دانش‌آموزان پنجم ‏ابتدایی شهر تهران، فناوری آموزش.
37. دیواندی، ج. و بزرگ قمی، ل. (1397). بهره‌گیری از قابلیت‌های نور و رنگ در فضاهای آموزشی در راستای افزایش خلاقیت کودکان، معماری شناسی.
38. صراف، م.، البرزی، ف و امینی، ا. (1402). بررسی تاثیر عناصر کالبدی فضاهای آموزشی بر ارتقای خلاقیت کودکان با تحلیل گرافیکی نقاشی. معماری و شهرسازی آرمان شهر.
39. گرامی‌فرد، م.، غلامی، ن.، عبدالهی، س.، و صراف، ا. (1402). تحلیل اثر کیفیت بصری کالبد فضای آموزشی بر ارتقای خودکارآمدی کودکان 4 تا 6 سال (مورد مطالعه: پیش دبستانی های اصفهان). مجله علمی گفتمان طراحی شهری.
40. محمدپناهی، ن و بیات مختاری، ل. (1403). تأثیر آموزش ادراك فضایی دیداري بر ارتقاء تئوري ذهن در دانش‌آموزان داراي اختلال یادگیري. نشریه علمی پژوهش در یادگیری آموزشگاهی و مجازی.
41. یارمحمدیان، ن.، عظمتی، س.، و طاهرسیما، س. (1401). بررسی تأثیر مؤلفه‌های ادراکات محیطی فضاهای آموزشی بر ارتقای یادگیری دانش‌آموزان. مجله پژوهش‌های معماری نوین.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Haft Hesar Journal of Environmental Studies

Designed & Developed by : Yektaweb